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Abstract

In this paper we present an algorithm for robust absolute
position estimation in natural terrain based on landmarks
extracted from dense 3-D surfaces. Our landmarks are
constructed by concatenating pose dependent oriented
surface points with pose invariant surface signatures into
a single feature vector; this definition of landmarks
allows a priori pose information to be used to constrain
the search for landmark matches. The first step in our
algorithm is to extract landmarks from stable and salient
surface patches. These landmarks are then stored in a
closest point search structure with which landmarks are
matched efficiently using available pose constraints and
invariant values. Finally, an iterative pose estimation
algorithm, based on least median squares, is wrapped
around landmark matching to eliminate outliers and
estimate absolute position. To validate our algorithm, we
show hundreds of absolute position estimation results
from three different natural scenes. These results show
that our algorithm can incorporate constraints on
position and attitude for efficient landmark matching and
match small and dense scene surface patches to large and
coarse model surfaces.

1 Introduction

Absolute position estimation determines the position of a
robot in a global coordinate system by comparing data
collected with onboard sensors to a stored model of the
world. Often absolute position estimation is obtained by
matching landmarks extracted from sensed data to
landmarks stored in a global database. The defining
qualities of landmarks are an invariance to rigid
transformation, stability in the presence of changes in
viewing direction and illumination conditions, and global
descriptiveness that reduces ambiguity during matching.
In real situation, there often exists external information
that can be used to guide the search for landmarks. For
example, other onboard sensors (e.g., gyros) may give an
initial estimate on the pose of the sensor. In another case
domain knowledge is helpful; a car cannot be driven
upside down. If this kind of information can be
incorporated systematically into landmark search, then
more efficient and robust absolute position estimation
algorithms will result.

To this end, we have developed a new representation for
surface landmarks constructed from dense 3-D data. Our
representation combines the pose of an oriented point on a
sensed surface with a vector of pose independent
invariants into a single feature vector. In this paper we
show how, using this combined feature vector, it is
possible to apply domain knowledge about the pose of the
sensor in a systematic way to limit landmark search.
Our application domain is autonomous navigation in
natural terrain. One of the difficulties of navigating in
natural terrain is developing a model for landmarks that
applies to the irregular and highly variable surfaces
encountered in nature. Spin-images [6][7] have been
shown to be effective invariants for matching free form
surfaces, and we use them as the invariant component of
our landmarks. However, if spin-images are to be used in
landmarks, a way to select stable and distinct spin-images
from all spin-images computed on a surface must be
developed. In this paper we define spin-image saliency
and show how to use it to select distinct landmarks.
Matching of high-resolution local scene patches to a
coarse model of the terrain is a useful capability for
autonomous navigation. This capability allows a robot to
determine its position in a global sense, which can
ultimately improve mission planning as well as reduce
dead reckoning errors. However, the large fraction of
model surface not represented in the scene and the
difference in resolution between the data sets make this
problem especially difficult for surface matching
algorithms. To demonstrate the effectiveness of our
algorithm, we present more than one hundred results from
three different natural scenes where this problem is
solved.
Multiple researchers have shown that surface shape data
can be used directly estimate the position between
surfaces. Besl and McKay [1] and Zhang [14] developed
iterative closest point algorithms (ICP) for aligning
surfaces. These algorithms are effective, but they require
an initial estimate of the alignment between surfaces.
Sharp et al.  [10] augmented the traditional ICP algorithm
with invariants to increase the range of convergence but
their algorithm is still fundamentally local. On the other
end of the spectrum are absolute position estimation
algorithms that require no knowledge of the pose between
surfaces [6][7][5][3]. In this paper we develop the middle
ground by creating an algorithm that can seamlessly
incorporate as much pose information as is available to
guarantee robust and efficient landmark matching.
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2 Surface Landmarks

We represent surfaces with meshes, piecewise linear 3-D
surfaces composed of vertices and faces. We use surface
meshes because they are proven representations for
surface matching and can represent the complicated and
irregular surfaces expected in natural scenes. Given a
surface mesh, we can generate a landmark at any vertex
using the 3-D position, surface normal and surrounding
surface shape of the vertex.  First we create an oriented
point using the vertex position and surface normal. This
oriented point defines the pose dependent component of a
landmark and provides a coordinate system in which to
define the invariants used in matching.
The surface invariants we use are based on spin-images.
Spin-images are pose independent encodings of the local
surface shape around an oriented point. Spin-images were
introduced in [6] where they were applied to the problem
of surface matching. Briefly, a spin-image is generated as
follows. With respect to an oriented point, a 3-D point has
two parameters: the distance from the normal line and the
signed distance from the tangent plane defined by the
oriented point. By projecting every surface point in the
vicinity of an oriented point into a 2-D accumulator
indexed by these parameters, an image is generated. This
image is pose independent and, because of its finite
support, has robustness to clutter and occlusion.
When spin-images are defined at every vertex of a mesh,
a high dimensional surface invariant manifold is
generated. Since this set of spin-images contains a large
amount of redundant information, this manifold for the
most part exists in a small dimensional sub-space of the
original spin-image space. Using this observation, it was
shown in [7] that spin-images can be compressed using
principal component analysis (PCA) and replaced by low
dimensional tuples of invariants, called a spin-tuple,
without significant loss in matching fidelity.
With these definitions in hand, we can now give a precise
definition of a landmark. A landmark defined at an
oriented point is a feature vector generated from the
concatenation of the oriented point position p = [px,py,pz],
oriented point surface normal n = [nx,ny,nz],  and spin-
tuple i = [i1,…,it]  that results from compression of the
spin-image generated at that oriented point.  If the tuple of
invariants has t components then a landmark is the t+6
dimensional feature vector

 (1) l = [ , , , , , , , , ]p p p n n n i ix y z x y z t
T
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By combining pose and shape invariant information into a
single vector, pose information can be used to limit the
search during landmark matching. Surface position is
used to limit search when bounds are placed on
translation between model and scene and surface normal
is used to limit search when bounds are placed on rotation
between model and scene. Given these bounds, the

invariant of a landmark is used to find the exact match
between model and scene landmarks. The use of pose
estimates to limit search for landmarks will be explained
in full in Section 2.3, but first we will explain some
improvements to spin-image generation and selection for
efficient matching.

2.1 Landmark Generation

While sticking close to the original spin-image generation
and matching algorithms, we have come up with some
improvements to the original techniques that significantly
increase matching accuracy and speed. To systematically
show the benefit of our modifications, we have analyzed
each modification by matching spin-images generated
from two synthetic surface meshes. These meshes
describe the same scene shape but are constructed to have
different surface sampling, different mesh connectivity,
and different randomly generated vertex position noise.
These differences ensure that no two vertices from the
two meshes correspond to exactly the same position in the
scene, so corresponding spin-images generated from the
different meshes will be similar but never exactly the
same. To test the modifications, spin-images from one
mesh were compared to spin-images from the other mesh.
If the vertices corresponding to the best matching spin-
images are also the closest vertices in Euclidean space,
then the match was correct, otherwise the match is
incorrect. For each modification, the percentage of correct
matches and the match time are shown in Table 1
As a starting point we matched spin-images generated
using a cylindrical parameterization.  To minimize the
effect of mesh resolution and variability between vertices,
we use a variant of the discrete version of surface
interpolation proposed in [5]. In our approach, spin-
images are still generated at vertices of the original mesh.
However, a (different) set of points that is guaranteed to
have a uniform distribution over the surface of the mesh is
used to generate the spin-images. During spin-image
generation, instead of incrementing the spin-image by 1
for each point that falls within the spin-image support, the
spin-image is incremented by a fixed interpolation point
area. This guarantees that the spin-images encode surface
area and not vertex density, which enables landmark
matching between meshes of different resolutions. As
shown in Table 1, using a cylindrical parameterization
and surface interpolation we obtained 76.3% correct
matches with matching taking 356 ms/image in our two
synthetic data sets.
The next modification was to change the spin-image
parameterization from cylindrical to a spherical.  As
shown in Figure 1, the spherical parameterization projects
a 3-D point into a spin-image using the radial distance ρ
and the elevation angle φ. The motivation behind a
spherical parameterization is to reduce spin-image
inconsistencies due to surface normal error.  In the
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cylindrical parameterization, the effect of the error in
surface normal on the spin-image generated will increase
with the distance from the oriented point origin. This can
cause the outer pixels of the spin-images to become
uncorrelated which will increase the variance of the pixels
and decrease spin-image correlation. However, with the
spherical parameterization, the effect of surface normal
error will be constant across the image.  If the images are
compared through correlation, this means that a constant
bias will be introduced between matched pixels but the
pixel variance will remain the same, so the chance of
correct spin-image matching improves. Using the
spherical parameterization increased the correct match
percent to 80.8% while the match time is roughly the
same as before at 336 ms/ image.
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Figure 1 Spherical spin-image parameterization and
hypercell bounds illustration.

2.2 Landmark Selection

The next modification was made based on the observation
that many of the incorrect matches are occurring in areas
of the mesh with high curvature. This seems reasonable;
in areas of high curvature, surface normal cannot be
computed robustly.  If vertices with high curvature are
eliminated from matching then the likelihood of obtaining
correct matches goes up at the expense of eliminating
some vertices that may have been matched correctly.
To eliminate surfaces based on curvature we first smooth
the surface mesh [11] and then compute curvature at each
vertex [12]. Then, for both meshes, we only generate and
match spin-images at vertices that have a curvature that is
less than a threshold (0.5 using Taubin’s curvature
measure). This modification increases the correct match
percentage to 91.1% and decreases matching time to 257
ms/image.
The final modification is to compress the spherical spin-
images using principal component analysis [7]. For the
test and the results presented in this paper, the spin-
images were compressed from an image size of 50 bins to
a spin-tuple dimension of 10; spin-tuples were compared
using the l2 norm. Although the correct matching
percentage decreased to 88.0%, the decrease in matching
time to 61 ms/image makes the slight loss worthwhile.
Taken as a whole, this sequence of improvements has
increase the matching percentage to close to 90%  (a 20%
improvement) while decreasing the matching time to 61
ms/ image, a 600% improvement.

Table 1 Spin-image modifications.

Modification % correct Match time (ms)
Mesh interpolation 76.3 356

Spherical parameterization 80.8 336

Curvature Masking 91.1 257

Compression 88.0 61

2.3 Landmark Saliency

Surface symmetry or repetitive surface shape can cause
spin-tuples from different places on a surface to be
similar. This can cause landmark matching errors
because, a scene tuple may match a model tuple very well
even though the object-centered position of the landmarks
is different. If spin-tuples that are similar to other spin-
tuples can be detected and removed from the matching
process, then the likelihood of correct matching will
increase.
Saliency is a measure of how distinct a sample point is
from other samples in its set.  In matching, salient points
are the points least likely to be confused with other points
in the set. Saliency has been applied to the problems of
face recognition [13] and stereo matching [8]. In our
application, we would like to select the most salient spin-
tuples on the model surface and use only those for
matching.  To do this we first need a definition and a way
to compute spin-tuple saliency.
Saliency is inversely proportional to the density of the
spin-tuple distribution. Under the assumption that a
mixture of gaussians can model the spin-tuple
distribution, we use the kernel method [2] to estimate the
density at any point x in the spin-tuple space.  At each
spin-tuple ii from the model containing N spin-tuples we
place a Gaussian distribution G, the sum of which defines
the spin-tuple density p(x) at x

p
N

G i i

N
( ) ( ; )x x i= − ∑∑1

1

The covariance ∑i is equal to the covariance of the entire

distribution of spin-tuples sample up to a scale factor s.
The covariance of the distribution is available from spin-
image compression and the scale factor is set as suggested
in [13] to

s
N

t t= + +( ( )) / ( )4
2 1 4

To compute the saliency of each spin-tuple we compute
p i( )i . Spin-tuples with a density above a threshold are

considered to have a saliency that is too low for accurate
matching and are eliminated as landmarks.

Computing p i( )i is an O(n2) process, however it can be

speed up considerably using the efficient closest point
search structure described in the next section.  Using this
data structure all of the spin-tuples within a hypercube
whose size is defined by the major axis of the spin-tuple
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covariance ∑i can be found efficiently.  Then p i( )i can

be computed using just these spin-tuples and associated
gaussians.
Figure 2 shows the landmarks on a surface before and
after masking by saliency.  Most of the landmarks in the
flat part of the surface are eliminated because in flat areas,
spin-tuples will be very similar.  However, the spin-tuples
were not eliminated in flat areas that are close to
interesting surface features.  This indicates that
eliminating features based solely on flat curvature would
not be appropriate because it would eliminate some
landmarks that are distinct for matching and, being on flat
parts of the surface, more likely to be accurate.

Original landmarks Salient landmarks

Figure 2 Salient Landmarks.

3 Efficient Landmark Matching

Some knowledge of pose is usually available during
landmark matching either from estimates derived from
other sensors or problem context (e.g., a land vehicle does
not drive upside down). By reducing the number of
candidates during search for the best matching landmarks,
this pose information can make landmark matching more
efficient. It can also be used to reduce ambiguity between
landmark matches; if multiple landmarks are similar then
the closest one (in pose space) is chosen as the match. We
use an efficient closest point search structure to store
landmarks so that the incorporation of pose information
into landmark matching is simple yet effective.
Before describing how pose constraints are used to limit
search in landmark matching, we give an overview of our
algorithm for landmark matching. In landmark matching
for absolute position estimation, a small scene data set is
usually searched for in a larger model data set. Model
data is processed, before matching, to extract landmarks,
which are then stored in an efficient closest point data
structure as follows. First the model surface is
interpolated and areas of high curvature are masked out.
For the remaining mesh vertices, spherical spin-images
are generated and these are then compressed into low
dimensional spin-tuples using PCA.  Surface landmarks
(1) are then created by concatenating vertex position,
surface normal and spin-tuples. These landmarks are then
stored in the efficient closest landmark data structure. At

runtime, a scene vertex is selected at random, and if it
passes the curvature constraint, its spherical spin-image is
generated using the model spin-image parameters.  This
spin-image is compressed using the model principal
components and a scene landmark is generated from the
scene vertex position, surface normal and spin-tuple. This
landmark is then used to query the model closest
landmark data structure to find the closest matching
model landmark.

3.1 Closest Landmark Search

The closest landmark data structure used is a variant of
the one first introduced in [9]. Their data structure enables
efficient closest point search in high dimensional data
using the simplification that if a closest point is not within
a hypercube of size ε, it will not be found.  The basic
search principal of operation is as follows.  First, model
landmarks are inserted into the data structure, and sorted
lists for each coordinate of the model landmarks are
created. Arrays of forward and backward pointers keep
track of the true and sorted location each of coordinate for
each model landmark. At runtime, the model landmarks
within a hypercube of size ε around the input scene
landmark are found by first eliminating all model
landmarks whose first coordinate is not within ε of the
first coordinate of the scene landmark. The sorted lists of
coordinates and the forward and backward pointers make
this a logarithmic process for each coordinate. This
process continues sequentially through the remaining
coordinates; in the end, the model landmarks remaining
are those that are within the hypercube. The closest model
landmark is then selected as the remaining landmark that
has the minimum l2 distance to the scene landmark. The
efficiency of search is controlled by ε; if ε is made small
then more points are eliminated early in the search and the
overall speed of search is increased.
In our approach we represent pose constraints as strict
bounds placed on the translation and rotation angle
between landmarks. A bounding box surrounding the
scene landmark enforces the translational constraint; if a
model landmark matches a scene landmark, its position is
within the bounding box. We represent rotational
constraints as a strict bound placed on the rotation angle
between two landmarks.  If two landmarks match then the
rotation that aligns the surface normals of the landmarks
is less than this angular bound.  This angular bound can
be transformed into a bounding box on surface normal
coordinates.
With these insights, modification of the Nene and Nayar
data structure to incorporate variable pose constraints into
the landmark matching problem is straightforward.
Instead of using a hypercube of  scalar bound ε during
closest point search, a hypercell with variable bounds

 (2) ε ε ε ε ε ε ε ε ε= ( , , , , , , , , )x
p

y
p

z
p

x
n

y
n

z
n

i
i

t
iK



5

is used. Each of the pose dependent coordinates uses a
different bound which, as explained below, depend on the
constraints placed on the translation and rotation between
landmarks. Landmarks are organized so that the pose
dependent landmark coordinates (position and normal) are
searched first during closest landmark matching.
Consequently, landmarks that do not meet the pose
constraints are eliminated in the closest point search
structure before any invariant information is considered.
After the pose dependent coordinates have been searched,
the pose invariant coordinates are searched using a fixed
bound. The remaining landmarks meet the pose
constraints as well as the invariant constraint. Finally, the
best matching model landmark is chosen from the
remaining landmarks as the one that minimizes the l2

distance between its invariant and the scene landmark
invariant.

3.2 Setting Hypercell Bounds

To make the bounds explicit, suppose that the model

landmark l m matches a scene landmark l s
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The strict hypercell bounds on translation between

landmarks is established by the position bound ε p

 (3) p p ii
m

i
s p− ≤ =ε 1 3K

Because the bound on surface normal is expressed as a
maximum angle α by which the surface normal can be
rotated, defining the bounding box for surface normal is
more involved. The basic idea is to construct the
bounding box for surface normal as if it were the z-axis,
given α, and then to rotate this bounding box to the
landmark surface normal. A pictorial description of the
process is given in Figure 1. The strict hypercell bounds
on surface normal coordinates can be represented by the
equation

 (4) n n ii
m

i
s

i
n− ≤ =ε 1 3K

We use a single bound on distance between invariants εi.
We found that setting εi to the average distance between
nearest neighbor model invariants produces good results.
εi can be computed quickly by randomly querying the
closest landmark data structure with a few existing model
landmarks and taking the average distance between
closest landmarks. The strict hypercell bounds on surface
normal coordinates can be represented by the equation

 (5) i i i ti
m

i
s i− ≤ =ε 1K

It should be noted that the although the position and
invariant bounds do not depend on the individual scene
landmark position, the surface normal bounds do and
must be computed anew for each scene landmark.

4 Robust Surface Matching

We match multiple scene landmarks to the model
landmarks for the following reasons. First, a single
landmark is not sufficient for computing a rigid
transformation between model and scene; using position
and normals, at least two landmarks must be matched.
Second, if part of the model is occluded then the scene
may contain landmarks that do not appear in the model.
Finally, scene clutter and sensor noise can cause
mismatches between model and scene landmarks. These
mismatches need to be detected and removed so that they
do not corrupt the final position estimate. Motivated by
the Iterative Closest Point (ICP) algorithm [1][14] we
have developed a robust iterative position estimation
algorithm that handles multiple landmarks and eliminates
landmark mismatches. An iteration has three stages:
landmark matching, robust pose estimation and landmark
transformation. We use an iterative algorithm because, it
allows us to enforce geometric consistency between
landmarks while computing the rigid transformation that
aligns the scene to the model.
To match landmarks, first, multiple vertices are selected
at random (on order 100) from the scene. If a selected
vertex passes the curvature constraint, then its landmark is
generated and the closest matching model landmark,
which is within the pose constraints, is determined. This
process is repeated for the remaining selected vertices,
which generates multiple model landmark to scene

landmark matches [ , ]l li
m

i
m .

Next, a robust Least Median Squares (LMedS) pose
estimation algorithm is employed to remove mismatches
and estimate pose. This algorithm investigates multiple
triples of landmark matches to find a triple that is free of
mismatches. The number of triples n is based on the
expected percentage of mismatches o and the desired
probability P of obtaining a sample without outliers.

n P o= − − −ln( ) / ln( ( ) )1 1 1 3

For each triple, the best Least Squares (LSQ) rigid
transformation (R,t) that aligns the scene landmarks to the
matched model landmarks is computed [4]. Given this
transformation the residual errors are computed for each
landmark

r Ri i
s

i
m= + −p t p

2
.

If the median residual error for these matches is less than
the median residual error computed for all previous
transformations rmed , the current transformation becomes

the best encountered so far ( , )Rbest bestt . The process is
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repeated for all of the n triples. Next the robust standard
deviation

σ r medn
r2 214826 1

5

3
= +

−
( . ( ))

is computed, and using σ r , a landmark match is

eliminated if

r Ri best i
s

best i
m

r= + − >p t p
2

σ

Using the remaining landmarks, a LSQ transformation is
computed and it becomes the transformation for the
current iteration.
In the last step of each iteration the position and surface
normal bounds are reduced. This is reasonable, because
the scene surface is converging on the model and the
distance between scene and model vertices as well as the
angle between scene and model normals is decreasing. To
set the new bounds on position and normal we use the
algorithm presented by Zhang [14] for setting a threshold
between points in his iterative closest point algorithm.
This algorithm is based on constructing a histogram of the
distances between matched points and from this
histogram selecting a threshold that keeps point matches
that are within the first mode of the histogram. This
algorithm is applied directly to determine the new

position bounds ( , , )ε ε εx
p

y
p

z
p . This algorithm can also be

applied to the matched surface normals if the angle
between matched landmarks is used instead of the
distance between vertices. The algorithm determines a
new surface normal angle bound α which is then used to

set the new bounds on surface normal ( , , )ε ε εx
n

y
n

z
n .

As the iterations progress, the position and surface normal
bounds decrease. This has the effect of enforcing the
geometric consistency of matches. Since the distance
between scene and model matches becomes smaller and
smaller, the geometric configuration of model landmarks
approaches the geometric configuration of the scene
landmarks; this is the definition of geometric consistency.

5 Results

To test our algorithm, we collected various 3-D scans of
natural terrain using a long range scanning laser
rangefinder. The rangefinder has a maximum range of
800 m, a 10° field of view (FOV) with a programmable
scan pattern that allows a maximum of 500x500 pixels to
be collected.
The data sets for our first result were taken of a tree, rock
and bush covered slope. Two scans were taken; one
approximately 300 m from the slope and the other from a
slightly different attitude and 250 m from the slope. Each
scan had a 10° FOV and 500x500 samples. The ground
truth change in position between the scans was
determined through surveying of targets surrounding the

sensor. To create the model mesh, the samples from the
first scan were projected into a 10° FOV, 200x200 pixel
range image; samples falling into the same pixel were
averaged. From the range image a mesh was created.
Similarly, to create each scene mesh, a 2° FOV, 50x50
pixel range image was created from a view slightly
shifted from the sensor origin of the second scan. Using
this procedure, each scene mesh covered approximately
4% of the model surface and the resolution of each scene
mesh was 2x the resolution of the model.

2-D Slice

Scene
Mesh

Model
Mesh

Close-up
Wireframe

Representative Scene and Model Matches

Front View Side View

Figure 3 Surface matching result for a tree covered
slope.
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Representative Scene and Model Matches

Front
View

Scene Mesh

Close-up
Wireframe

2-D Slice

Model Mesh

Side
View

Figure 4 Surface matching result  for a rocky cliff..

We extracted 80 scenes from the second scan and
successfully matched them to the model surface. Some
representative scene meshes (color) are shown
superimposed on the model mesh (gray) in Figure 3. As
shown in the figure, scene meshes are only created in the
region of the overlap between the scans. Figure 3 also
shows a single scene mesh matched to a model surface, a
close-up of the model and scene meshes showing the 2x
difference in resolution and a 2-D slice cut horizontally
though the two meshes showing the accurate alignment of
the model and scene.

For these results we placed a strong bounds on rotation
between landmarks (α=10°) and no constraint on the
position between the landmarks. These constraints would
be typical of a sensor platform equipped with gyros.
Typical registration and timing result are given in
Table 2. The table shows that the registration errors are
within the resolution of the meshes being registered and
that the entire matching process including landmark
generation, matching and alignment takes less than 20
seconds on a 174 MHz R10000 SGI O2 workstation. This
result shows that we can rapidly match small scenes to a
large model with a 2x difference in resolution.
Figure 4 shows a result for two scans taken of a rocky
cliff.  In this result, the two scans are taken with a lateral
shift of 0.6 m between scans and the cliff face is
approximately 16 m away. 49 scenes were generated from
the second scan in exactly the same way as explained
above. All but three of the scenes were correctly matched
to the model. The scenes that were not matched correctly
corresponded to the flat region on the right side of the
model.  This region (as shown in Figure 2) lacked
adequate salient landmarks, so matching enough
landmarks in this region was not possible. As in the above
result, no bound was placed on translation and a small
(10°) bound was placed on the maximum rotation
between landmarks. As shown in Figure 4, the alignment
of the surfaces is quite accurate. However,
Table 2 shows that the error in the absolute translation
and rotation are larger than expected. The cause of this is
inadequate survey data to accurately estimate ground
truth. The final result shows the stitching together of 13
scans of a rocky slope taken as the sensor was
mechanically panned. The scans were taken 5° apart and
each had a 10° FOV and 500x500 samples. Each scan was
projected into a 200x200 range image with a 10° FOV
and the landmarks from adjacent scans were matched.
During matching, a 35 m position bound and a 30°
surface normal bound was placed on the landmarks.
Knowledge of pan angle was not used to initialize the
rotation between views. Figure 5 and
Table 2 shows that this type of panoramic data can be
accurately and rapidly matched.  This result also
demonstrates the accurate matching of two surfaces that
have only 50% overlap.

6 Conclusion

We have presented and algorithm for robust and efficient
surface landmark matching.  Our algorithm is based on
intelligent landmark selection and the incorporation of
pose information into the landmark matching process.
We have shown results where a small scene patch is
matched to a coarse model. This scenario is particularly
difficult because of the difference in resolution between
the model and scene and the relatively small size of the
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scene relative to the model. In the future we plan to apply
this work to self-localization of autonomous aerial
vehicles and precision landing on comets and asteroids.
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Table 2 Absolute position estimate results and parameters.

Result True
Translation

True
Rotation

Angle

Translation
Error

Rotation
Angle
Error

Model
Resolution

Scene
Resolution

Landmark
Generation

Time

Match
Time

Align
Time

Slope 50.0 m 2.2° 0.59 m 0.19° 0.45 m 0.19 m 11.4 s 4.2 s 4.4 s

Cliff 0.6 m 0.3° 0.16 m 0.61° 0.32 m 0.17 m 10.9 s 2.7 s 4.2 s

Panorama 0.0 m 5.0° 0.12 m 0.10° 0.25 m 0.35 m 23.0s 2.4 s 8.2 s

Top view
of scans

Stitched panorama

Figure 5 Surface matching result for a panorama of images. 13 scans were taken with 5°pan between scans.


